41 research outputs found

    Improved Complexity Bounds for Counting Points on Hyperelliptic Curves

    Get PDF
    We present a probabilistic Las Vegas algorithm for computing the local zeta function of a hyperelliptic curve of genus gg defined over Fq\mathbb{F}_q. It is based on the approaches by Schoof and Pila combined with a modeling of the \ell-torsion by structured polynomial systems. Our main result improves on previously known complexity bounds by showing that there exists a constant c>0c>0 such that, for any fixed gg, this algorithm has expected time and space complexity O((logq)cg)O((\log q)^{cg}) as qq grows and the characteristic is large enough.Comment: To appear in Foundations of Computational Mathematic

    Sparse Gr\"obner Bases: the Unmixed Case

    Get PDF
    Toric (or sparse) elimination theory is a framework developped during the last decades to exploit monomial structures in systems of Laurent polynomials. Roughly speaking, this amounts to computing in a \emph{semigroup algebra}, \emph{i.e.} an algebra generated by a subset of Laurent monomials. In order to solve symbolically sparse systems, we introduce \emph{sparse Gr\"obner bases}, an analog of classical Gr\"obner bases for semigroup algebras, and we propose sparse variants of the F5F_5 and FGLM algorithms to compute them. Our prototype "proof-of-concept" implementation shows large speed-ups (more than 100 for some examples) compared to optimized (classical) Gr\"obner bases software. Moreover, in the case where the generating subset of monomials corresponds to the points with integer coordinates in a normal lattice polytope PRn\mathcal P\subset\mathbb R^n and under regularity assumptions, we prove complexity bounds which depend on the combinatorial properties of P\mathcal P. These bounds yield new estimates on the complexity of solving 00-dim systems where all polynomials share the same Newton polytope (\emph{unmixed case}). For instance, we generalize the bound min(n1,n2)+1\min(n_1,n_2)+1 on the maximal degree in a Gr\"obner basis of a 00-dim. bilinear system with blocks of variables of sizes (n1,n2)(n_1,n_2) to the multilinear case: nimax(ni)+1\sum n_i - \max(n_i)+1. We also propose a variant of Fr\"oberg's conjecture which allows us to estimate the complexity of solving overdetermined sparse systems.Comment: 20 pages, Corollary 6.1 has been corrected, ISSAC 2014, Kobe : Japan (2014

    Gr\"obner Bases of Bihomogeneous Ideals generated by Polynomials of Bidegree (1,1): Algorithms and Complexity

    Get PDF
    Solving multihomogeneous systems, as a wide range of structured algebraic systems occurring frequently in practical problems, is of first importance. Experimentally, solving these systems with Gr\"obner bases algorithms seems to be easier than solving homogeneous systems of the same degree. Nevertheless, the reasons of this behaviour are not clear. In this paper, we focus on bilinear systems (i.e. bihomogeneous systems where all equations have bidegree (1,1)). Our goal is to provide a theoretical explanation of the aforementionned experimental behaviour and to propose new techniques to speed up the Gr\"obner basis computations by using the multihomogeneous structure of those systems. The contributions are theoretical and practical. First, we adapt the classical F5 criterion to avoid reductions to zero which occur when the input is a set of bilinear polynomials. We also prove an explicit form of the Hilbert series of bihomogeneous ideals generated by generic bilinear polynomials and give a new upper bound on the degree of regularity of generic affine bilinear systems. This leads to new complexity bounds for solving bilinear systems. We propose also a variant of the F5 Algorithm dedicated to multihomogeneous systems which exploits a structural property of the Macaulay matrix which occurs on such inputs. Experimental results show that this variant requires less time and memory than the classical homogeneous F5 Algorithm.Comment: 31 page

    On the Complexity of the Generalized MinRank Problem

    Full text link
    We study the complexity of solving the \emph{generalized MinRank problem}, i.e. computing the set of points where the evaluation of a polynomial matrix has rank at most rr. A natural algebraic representation of this problem gives rise to a \emph{determinantal ideal}: the ideal generated by all minors of size r+1r+1 of the matrix. We give new complexity bounds for solving this problem using Gr\"obner bases algorithms under genericity assumptions on the input matrix. In particular, these complexity bounds allow us to identify families of generalized MinRank problems for which the arithmetic complexity of the solving process is polynomial in the number of solutions. We also provide an algorithm to compute a rational parametrization of the variety of a 0-dimensional and radical system of bi-degree (D,1)(D,1). We show that its complexity can be bounded by using the complexity bounds for the generalized MinRank problem.Comment: 29 page

    Counting points on genus-3 hyperelliptic curves with explicit real multiplication

    Get PDF
    We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic curve defined over a finite field Fq\mathbb F_q, with explicit real multiplication by an order Z[η]\mathbb Z[\eta] in a totally real cubic field. Our main result states that this algorithm requires an expected number of O~((logq)6)\widetilde O((\log q)^6) bit-operations, where the constant in the O~()\widetilde O() depends on the ring Z[η]\mathbb Z[\eta] and on the degrees of polynomials representing the endomorphism η\eta. As a proof-of-concept, we compute the zeta function of a curve defined over a 64-bit prime field, with explicit real multiplication by Z[2cos(2π/7)]\mathbb Z[2\cos(2\pi/7)].Comment: Proceedings of the ANTS-XIII conference (Thirteenth Algorithmic Number Theory Symposium

    Hard Homogeneous Spaces from the Class Field Theory of Imaginary Hyperelliptic Function Fields

    Get PDF
    We explore algorithmic aspects of a free and transitive commutative group action coming from the class field theory of imaginary hyperelliptic function fields. Namely, the Jacobian of an imaginary hyperelliptic curve defined over Fq\mathbb{F}_q acts on a subset of isomorphism classes of Drinfeld modules. We describe an algorithm to compute the group action efficiently. This is a function field analog of the Couveignes-Rostovtsev-Stolbunov group action. Our proof-of-concept C++/NTL implementation only requires a fraction of a second on a standard computer. Also, we state a conjecture — supported by experiments — which implies that the current fastest algorithm to solve its inverse problem runs in exponential time. This action is therefore a promising candidate for the construction of Hard Homogeneous Spaces, which are the building blocks of several post-quantum cryptographic protocols. This demonstrates the relevance of using imaginary hyperelliptic curves and Drinfeld modules as an alternative to the standard setting of imaginary quadratic number fields and elliptic curves for isogeny-based cryptographic applications. Moreover, our function field setting enables the use of Kedlaya\u27s algorithm and its variants for computing the order of the group in polynomial time when qq is fixed. No such polynomial-time algorithm for imaginary quadratic number fields is known. For q=2q=2 and parameters similar to CSIDH-512, we compute this order more than 8500 times faster than the record computation for CSIDH-512 by Beullens, Kleinjung and Vercauteren
    corecore